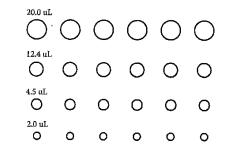
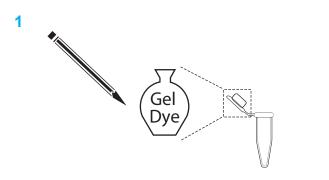

Lab 1.1 Flow Chart: Basic Pipetting And Serial Dilution



a. Pipetting different volume of the solution

2


• Choose an appropriate micropipette. Feel the first stop and second stop.

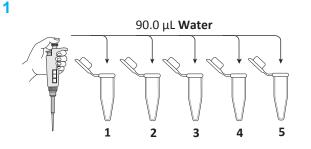
• Pipette the **50-fold Dye** of the volume below to the sheet:

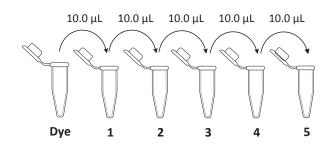
 $2.0 \,\mu\text{L}$ $4.5 \,\mu\text{L}$ $12.4 \,\mu\text{L}$ $20.0 \,\mu\text{L}$

b. Mixing solution: Preparing a 50-fold Dye

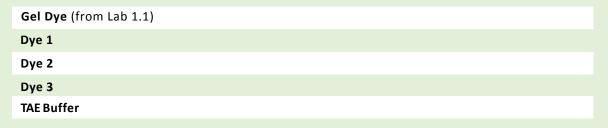
• Label a new microfuge tube 'Gel Dye' at the cap of the tube.

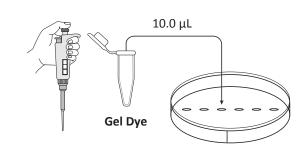
2




- Add 196.0 μL Water, and then 4.0 μL Dye to the tube.
- Mix well.

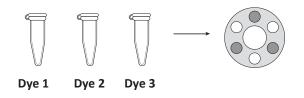
2


- Label 5 microfuge tubes 1 through 5 using a marker at the cap of the tube.
- Transfer 90.0 μL Water to the 5 tubes.


- Transfer 10.0 µL Dye to tube 1 and mix well.
- Use a new tip, transfer 10.0 μL solution from tube **1** to tube **2** and mix well.
- Repeat the process for tube **2** through **5**.
- Observe the change on color intensity

Lab 1.2 Flow Chart: Dye Separation By Gel Electrophoresis

2

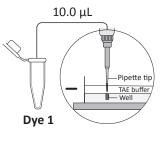

- Pour TAE Buffer into the practice plate.
- Practice your technique by pipetting 10.0 μL Gel Dye to each well.

Just cover the surface of the gel

TAE buffer

TAE buffer

Agarose gel

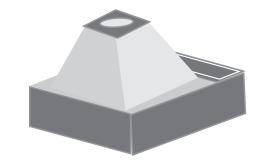

Centrifuge the **Dye 1**, **Dye 2** and **Dye 3** tubes.

Balance the weight :

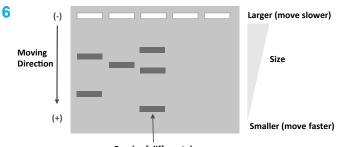
 Arrange the tubes in a triangular pattern for uniform weight distrbution

4

Make sure the wells are near the negative electrode.


- Add 10.0 µL Dye 1 solution into the well.
- Repeat the step for Dye 2 and Dye 3.
- Record the locations of your samples.

Avoid contamination:


• Change a new tip every time.

Avoidgetting air into the buffer:

• Press to 1st stop ONLY and hold the plunger while lifting up the pipette tip of of the buffer

- Put the photo hood on the gel system and turn on the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.

Bands of different dyes

- After 10 minutes, turn off the electric current.
- Remove the photo hood and observe the bands.

Well

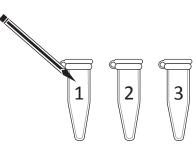
- Put the gel in the gel tank.
- Pour TAE Buffer into the gel tank.
- **Test the system:** Put the photo hood on the gel system and turn on the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.

5

1

3

Lab 2 Flow Chart: Identifying A Recombinant Plasmid

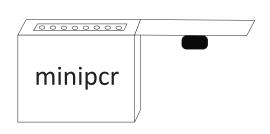

PCR Master Mix				
Plasmid A-rfp (Plasmid A with red fluorescent protein gene)				
Plasmid A				
Loading Dye				
DNA Ladder				
Water				
TAE Buffer				
Lab	2.1. Checking placmid with DCP			

2

4

6

Ink can come off the top of the tube in the 1 thermocycler (PCR machine).



- Label three PCR tubes 1, 2 and 3 with • your group number.
- 3 1 2 3
- Return all PCR tubes to the ice immediately. •

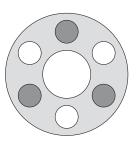
Avoid warming reagents:

- Tubes must be kept cold in ice.
- Hold the tube by the upper rim.

5

- •
- Transfer your PCR tubes from the ice into the thermocycler.

Lab 2.1: Checking plasmid with PCR


Table 2.1: Addition of reagents to the PCR tubes

	1	2	3
(a) PCR master mix	23.0 μL	23.0 μL	23.0 μL
(b) Plasmid A-rfp	2.0 μL		
(c) Plasmid A		2.0 μL	
(d) Water			2.0 μL
Total volume	25.0 μL	25.0 μL	25.0 μL

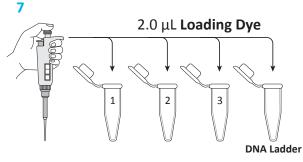
- Add reagents according to the order in Table 2.1.
- Gently pipette up and down several times to mix.

Avoid contamination:

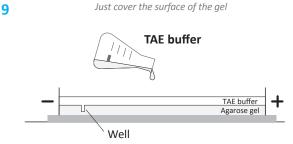
Change a new tip every time after adding a solution.

Gently tap the bottoms of the PCR tubes or centrifuge the tubes if there are bubbles.

Table 2.2: PCR thermocycler program for ABE


		Temperature (°C)	Time (sec)	
Initial hold		4	Indefinite	
Initial de	naturation	95	270	
30 cycles	Denaturation Annealing Extension	95 53 68	30 30 60	
Final extension		68	300	

Take your ice cup with PCR tubes to your teacher. • The thermocycler has been pre-programmed for the reaction.


Lab 2.2: Confirmation by gel electrophoresis

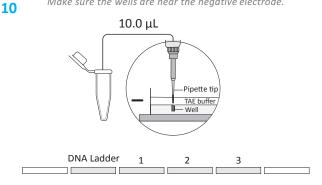
8

- Add 2.0 µL of Loading Dye to each of the three PCR tubes and to the tubes with DNA ladder.
- Gently pipette up and down several times to mix.

Avoid contamination: Change a new tip every time after adding a solution.

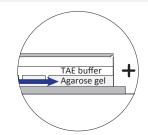
Put the gel in the gel tank.

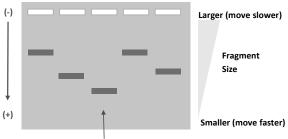
11


13

- Pour TAE Buffer into the gel tank.
- Test the system: Put the photo hood on the gel system and turn on the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.

Draw the location of the samples in your notebook.


Make sure the wells are near the negative electrode.


Add $10.0 \,\mu\text{L}$ of the **DNA ladder** and each samples (1, 2, 3) into designated wells.

Avoid contamination:

- Change a new tip every time.
- Avoid getting air into the buffer:
- Press to 1st stop ONLY and hold the plunger while lifting up the pipette tip of of the buffer

After two or three minutes, see if the bands are moving towards the (+) positive electrode.

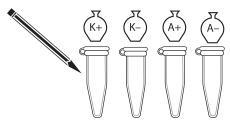
- Put the photo hood on the gel system and turn on • the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.

- After 20 minutes, observe the bands.
- Record the location of bands in your notebook

Bands shows different size of DNA fragment

12

Moving


Direction

Lab 3.1 Flow Chart: Cutting The Two Plasmids (Restriction Digestion)

Restriction Buffer Plasmid K **Plasmid A Restriction Enzymes (BamHI & HindIII)** Water

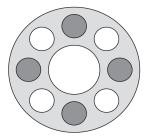
2

'+' means present ; '-' means absent 1

Label 4 new tubes as K+, K-, A+, and A- with class and group no. .

Add reagents according to the order in Table 3.1. ٠

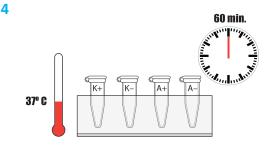
Table 3.1: Addition of reagents to the K+, K-, A+, and A- tubes


	K+	К—	A+	A–
(a) Restriction buffer	4.0 μL	4.0 μL	4.0 μL	4.0 μL
(b) Plasmid K	4.0 μL	4.0 μL		
(c) Plasmid A			4.0 μL	4.0 μL
(d) Restriction Enzymes and mix	2.0 μL		2.0 μL	
(e) Water and mix		2.0 μL		2.0 μL
Total Volume	10.0 µL	10.0 μL	10.0 µL	10.0 µL

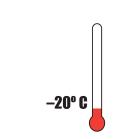
Avoid contamination:

Change a new tip every time after adding a solution.

Mix well:

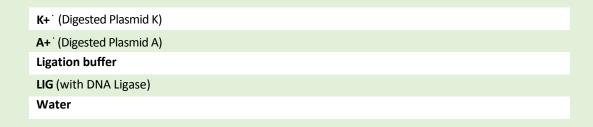

- Gently pipette up and down three times.
- To pool the reagents at the bottom of each tube 3

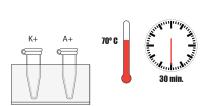
Spin the four microfuge tubes (K+, A+, K-, and A-) for few seconds.


Balance the weight: Distribute the tubes evenly

5

Incubate 4 tubes in 37°C water bath for 60 mins.


Avoid non-specific cutting: Incubate not longer than 2 hours


After the incubation, store 4 tubes in the -20°C freezer for use in Lab 3.2.

Lab 3.2 Flow Chart: Putting The rfp Gene Into The Plasmid (Ligation)

1

- Place the **K+** and **A+** in 70°C water bath for 30 mins.
- Label **LIG** with class and group no. .
- K+ A+

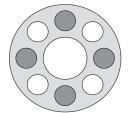
3

- After 30 minutes, remove **K+** and **A+** from the water bath.
- Add reagents directly into LIG according to the order in Table 3.2.

Table 3.2: Addition of reagents LIG tubes					
LIG (with 2.0 µL of DNA Ligase)					
(a) Digested plasmid A (A+)	4.0 μL				
(b) Digested plasmid K (K+)	4.0 μL				
(c) Ligation buffer	3.0 μL				
(d) Water and mix	2.0 μL				
Total volume	15.0 μL				

6

2


Avoid contamination:

• Change a new tip every time after adding a solution. <u>Mix well:</u>

• Gently pipette up and down three times.

5

Pool the reagents at the bottom of each tube

• Spin the LIG tube for a few seconds.

Balance the weight:

• Distribute the tubes evenly

• Incubate LIG tube at room temperature overnight.

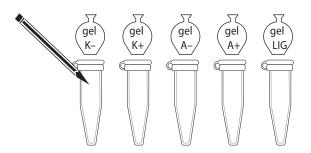
LIG

-20° C

7

• Store **K+** and **A+** tubes in the -20°C freezer for use in *Lab 3.3.*

Scientific Discovery for the Classroom


Lab 3.3 Flow Chart: Confirmation By Gel Electrophoresis

			-
K- (Non-digested Plasmi	d K)		
K+ (Digested Plasmid K)			
A- (Non-digested Plasm	id A)		
A+ (Digested Plasmid A)			
LIG (Ligated Plasmids)			
Loading Dye			
Water			
DNA Ladder			
TAE buffer			

'gel' indicates gel electrophoresis samples

1

2

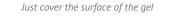
- Label five new microfuge tubes gel A-, gel A+, gel K-, gel K+ and gel LIG with class and group no. .
- Add reagents according to the order in **Table 3.3**.
- Pipette up and down several times to mix.

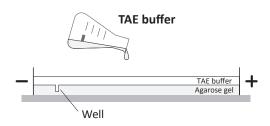
Table 3.3: Addition of reagents to the gel K–, gel K+, gel A–, gel A+, gel LIG and M tubes

	gel K–	gel K+	gel A–	gel A+	gel LIG	DNA Ladder
(a) Water	4.0 μL	4.0 μL	4.0 μL	4.0 μL	3.0 μL	
(b) Loading Dye	2.0 μL					
(c) Nondigested plasmid K (K–) and mix	4.0 μL					
(d) Digested plasmid K (K+) and mix		4.0 μL				
(e) Nondigested plasmid A (A–) and mix			4.0 μL			
(f) Digested plasmid A (A+) and mix				4.0 μL		
(g) Ligated plasmid (LIG) and mix					5.0 μL	
Total volume	10.0 μL					

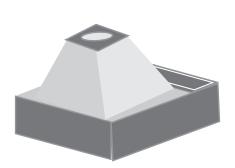
Avoid contamination:

Change a new tip every time after adding a solution.



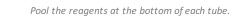


• Return the **LIG** tube to your teacher to store in the -20°C freezer for use in *Lab 4*.

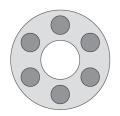

5

7

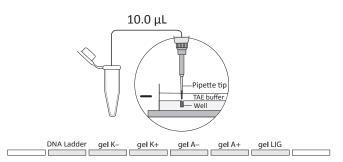
- Put the gel in the gel tank.
- Pour TAE Buffer into the gel tank.
- **Test the system:** Put the photo hood on the gel system and turn on the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.



- Put the photo hood on the gel system and turn on the electric current.
- Check if the green light is shining and bubbles come out at the (-) negative electrode.

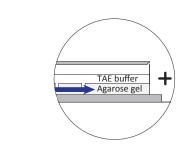


~20 min

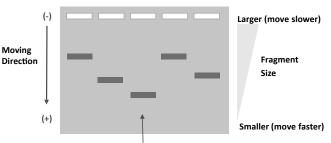

- After 20 minutes, observe the bands.
- Record the location of bands in your notebook

Δ

- Spin the six tubes (gel A–, gel A+, gel K–, gel K+, gel LIG and M) for a few seconds.
- 6 Make sure the wells are near the negative electrode.



Add 10.0 μL of the DNA Ladder and five samples (gel A–, gel A+, gelK–, gelK+ and gel LIG) into the wells.


Avoid contamination: • Change a new tip every time. Avoid getting air into the buffer: • Press to 1st stop ONLY and hold th

8

 Press to 1st stop ONLY and hold the plunger while removing the pipette tip out of the buffer.

• After two or three minutes, see if the bands are moving towards the (+) positive electrode.

Bands shows different size of DNA fragment

Lab 4 Flowchart: Transforming Bacteria With Recombinant Plasmid

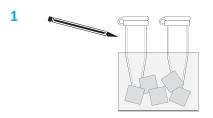
LIG/ Plasmid A-rfp
Luria Broth (LB)
E. coli
LB
LB/amp (one stripe)
LB/amp/ara (two stripes)

Ligated plasmid/ Plasmid A with red fluorescent protein gene Luria Broth 50 μL of chilled competent *E. coli* cells x 2 Plate contains Luria Broth (LB) Plate contains Luria Broth (LB) and ampicillin (amp) Plate contains Luria Broth (LB), ampicillin (amp) and sugar arabinose (ara)

10.0 μL LIG

E. coli + LIG

б

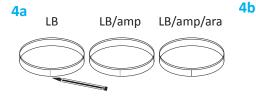

G

Part 1: Sample Preparation

10.0 μL Plasmid A-rfp

E. coli + A-rfp

2

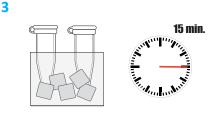


Label the E. coli tube:

- Without any plasmid as "E. coli"
- with Plasmid A-rfp as "E. coli + A-rfp"
- with LIG as "E. coli + LIG"

Avoid warming cells:

- Keep two tubes on ice.
- Do not hold the bottom of the tubes.

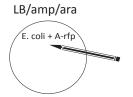


- Prepare three agar Petri plates— LB, LB/amp, and LB/amp/ara.
- Label the bottom of each plate with class & group no. .

Avoid contamination:

keep the plates closed while labelling

- Add 10.0 μL of **Plasmid A-rfp (or LIG)** to the E. coli tubes.
- Gently flick the tube three times to mix.
- Return the tube immediately to ice.



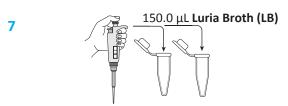
Keep all the E. coli tubes on ice for 15 mins.

Write small on edge of the plate. LB LB/amp E. coli A-rfp E. coli E. coli E. coli E. coli E. coli

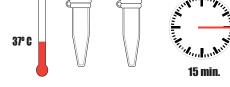
- Draw a line in the middle of LB and LB/ amp plate.
- Label half of each plate "E. coli" and the other half "E. coli + A-rfp".

4c

2 min.


- Label LB/amp/ara plate as "E. coli + A-rfp".
- Part 2: Transformation (Heat Shock and Recovery)

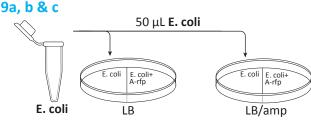
8


After 15-min incubation on ice, incubate the **E. coli** tubes in 42° C water bath for exactly 45 sec.

Avoid warming cells: • Carry tubes in the cup of ice to water bath.

- Add 150 μL of Luria Broth (LB) to the E. coli tubes
- Gently flick it three times to mix.

Immediately place the tubes back on ice for 2 mins.

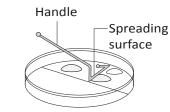


Incubate the **E. coli** tubes at room temperature (or 37° C) for 15 mins..

Avoid contamination: • change a new tip every time after adding a solution.

Part 3: Spread the Cells on Plates for Incubation

- Suspend **E. coli** by gently pump the pipette two or three times.
- Add 50 μL of E. coli cells to "E. coli" on LB plate and LB/ amp plate.


Avoid contamination:

11

13

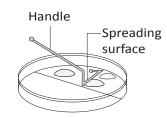
- Change a new tip every time after adding a solution.
- Open lid just big enough to add the cells (like a clamshell)
- Avoid the cells slipping to another half of the plates:
- Add the cells slowly to the section

10a, b & c

Use the same spreader to spread the **E. coli** cells evenly across the entire **"E. coli"** section on **LB** and **LB/amp** plate.

Avoid contamination:

12


14

16

- Hold the spreader by the handle.
- Do not allow the bent end to touch any surface.
- Open lid just big enough to add the cells (like a clamshell)

50 μL E. coli + A-rfp 100 μL E. coli + A-rfp E. coli E. coli + A-rfp LB LB/amp LB/amp/ara

- Repeat step 9 for E.coli + A-rfp.
- Add 50 μL E. coli + A-rfp cells "E. coli + A-rfp" on LB and LB/amp plates.
- Add 100 μL E. coli + A-rfp cells to the LB/amp/ara plate.

- Repeat step 10 for E.coli + A-rfp.
- Spread the E. coli + A-rfp cells evenly across the entire "E. coli + A-rfp" section on LB, LB/amp, and LB/amp/ ara plates.

Leave all plates right side up for 5 mins.

Incubate the plates at 37°C upside down for 24–36 hours.

- Tape all three plates together
- Label the tape with class & group no.

Examine the plates and record the amount of growth on each half.

