

ABE “Tools of the Trade” Literacy Activity

By Georgia Ewan, ABE Australia

ABE Master
Teacher
Fellowship
Program

AMGEN Biotech Experience
Scientific Discovery for the Classroom

AMGEN Biotech Experience

Scientific Discovery for the Classroom

The projects designed by the 2024–25 ABE Master Teacher Fellows are a compilation of curricula and materials that are aligned with the Amgen Biotech Experience (ABE) and further support teachers and students in their biotechnology education. These projects were created over the course of a 1-year Fellowship in an area of each Fellow's own interest. Each is unique and can be adapted to fit the needs of your individual classroom. Objectives and goals are provided, along with expected outcomes. Projects can be used in conjunction with your current ABE curriculum or as an extension.

As a condition of the Fellowship, these classroom resources may be downloaded and used by other teachers for free. The projects are generally not edited or revised by the ABE Program Office for content, clarity, or language except to ensure safety protocols have been clearly included where appropriate.

We are grateful to the ABE Master Teacher Fellows for sharing their work with the ABE community. If you have questions about any of the project components, please reach out to us at ABEInfo@edc.org, and we will be happy to connect you with the author and provide any assistance needed.

ABE “Tools of the Trade” Literacy Activity

TIME FRAME: 2 hours

SUGGESTED AGE RANGE: 15–18 year olds

SUGGESTED COURSE OR CONTENT AREA: Students to use alongside the Amgen Biotech Experience

CONNECTION DESCRIPTIONS: Teachers will explore literacy and writing.

AUTHOR: Georgia Ewan

PROGRAM SITE: ABE Australia

1. Overview

Students write their own descriptive reports about various “tools of the trade” used in the Amgen Biotech Experience. The teaching sequence is based on the “I do”, “We do” and “You do” model of instruction which gradually shifts the cognitive load from teacher to student, scaffolding their learning to build more confidence and independence.

- I Do – Teacher modelling:** The teacher introduces a model descriptive report that mirrors what students will eventually create (Model Text 1). This text is used to explicitly explain the structure and stages of the report and highlight key scientific terminology and language features.
- We Do – Collaborative Construction:** In small groups, students co-write a descriptive report on a different biotechnology tool (Model Text 2). They follow the model text and apply the same structure and language features modeled by the teacher, allowing for peer learning and scaffolded practice.
- You Do – Independent Writing:** Students individually write their own descriptive report about a different tool (Model Text 3), applying the knowledge and writing strategies they’ve developed throughout the lesson.

This activity includes model texts and annotations for the following tools:

1. Equipment: Micropipettes, Gel electrophoresis, Centrifuge, PCR
2. Biological tools: Restriction Enzymes, DNA Ligase, DNA polymerase

Teacher flexibility: This resource is designed for adaptability.

- Teachers may select to complete the “I do”, “We do” and “You do” model of instruction twice—one based on equipment and the next based on biological tools.
- Educators may select which tools to focus on based on curriculum goals or class needs.

- Scaffolding can be adjusted to support a range of student abilities and experiences.

2. Learning Goal

- Independently write a descriptive report on biotechnology equipment and biological tools using appropriate stages, scientific terms and language features.

3. Key Vocabulary

Micropipettes, Gel electrophoresis, Centrifuge, PCR, Restriction Enzymes, DNA Ligase, DNA polymerase

Also, see underlined words in slides.

4. Materials

- [ABE Tools of the Trade Literacy Activity slides](#)
- Printed model text (each is on a separate page at the end of this document)
- Large posters and markers or access to a shared document

Optional:

- Scaffolding activities
- Printed rubric

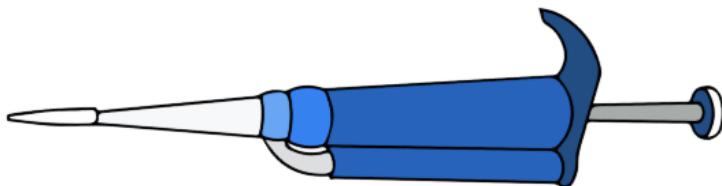
5. Teacher Preparation

Adjust the slide presentation based on class needs.

- Choose which texts to use for the “I do”, “We do” and “You do” sections
- Print the model text out for each student
- Determine the level of scaffolding for the “We do” and “I do” writing and print associated materials

High-Level Scaffolding (More Structured & Guided)	<ul style="list-style-type: none"> • Provide students with the sample Text 1 and Text 2 cut into sections (based on stages). Rearrange the sample texts into the correct order. • Adjust the sample texts into a close passage (leaving key scientific language as blanks). Example is on page 13. • Provide students with a list of sequential conjunctions, cause and effect conjunctions and evaluative language that they can substitute into the sample texts.
Mid-Level Scaffolding (Shared Responsibility)	<ul style="list-style-type: none"> • Provide the visual summary to students

Low-Level Scaffolding (More Independence)	<ul style="list-style-type: none"> Students can draw their own visual summary Only allow students their annotated model text when writing collaboratively and individually
---	--


6. Sequence of Activities

Instruction method	Activity	Time	Materials
	1. Teacher introduces the range of equipment and biological tools students will explore through descriptive report writing. The teacher also introduces the 'I do, We do, You do' model, explaining how each phase supports students in developing their writing skills.	2 mins	<u>ABE Tools of the Trade Literacy Activity slides</u> Slide 1
I do	2. Teacher distributes the handout of the chosen model text (Model Text 1) for the equipment. Students read the text individually or with teacher guidance.	5 mins	Model Text handout (Choose 1 from pp. 6–9)
	3. Teacher uses the slideshow animations to explicitly unpack each stage of the descriptive report (function, how it works, application in gene cloning and importance/impact). Students annotate their copy of the model text alongside the teacher's explanations.	3 mins	
	4. Teacher leads a discussion to identify and underline the scientific language of the text. Students underline the words on their model text.	3 mins	
	5. Teacher leads a discussion to identify the subgenres of the text and the associated language features of these stages. Students use different coloured highlighters to visually code these features on their copy of the model text.	3 mins	
	6. Students form small groups (3–4) to co-construct Text 2—a descriptive report on a different biotechnology equipment. Students follow the model text and apply the	20 mins	Posters and markers OR a shared document.

	<p>same structure and language features. Each student has a turn writing.</p> <p>NOTE: Various levels of scaffolding can be applied at this step.</p>		Scaffold materials if needed (e.g., p. 13)
	7. Groups can review, annotate, and apply a simple rubric to evaluate peers' posters or digital documents.	10 mins	Rubric p. 14
I do	<p>8. Students work individually to write a Text 3, based on the model and supported writing text. They edit, check, redraft, annotate and publish their text.</p> <p>NOTE: Various levels of scaffolding can be applied at this step—See teacher preparation.</p>	10 mins	Scaffold materials if needed (e.g., p. 13)
	<p>9. Students assess their writing using the same rubric applied in the collaborative task.</p> <p>Optional: Class can read and annotate the sample text provided to improve their individual descriptive report and reinforce learning.</p>	10 mins	Model Text handout (Choose from pp. 6–9) Rubric p. 14
Repeat	10. Repeat the full lesson sequence using model texts and tasks focused on biological tools (e.g., DNA ligase, PCR, restriction enzymes).	1 hour	<u>ABE Tools of the Trade Literacy Activity slides</u> Model Text handout (Choose 1 from pp. 10–12)

Micropipettes - Model text

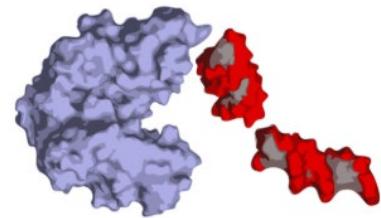
Micropipettes are laboratory tools used to measure and transfer very small volumes of liquid, typically in microlitres (μL). Liquid is drawn into a disposable tip of the micropipette by pressing the plunger to the first stop and slowly releasing it while submerged in the liquid. It is then dispensed by pressing the plunger to the second stop, followed by tip ejection to maintain sterility. In gene cloning, micropipettes are essential for accurately measuring reagents such as enzymes, buffers, and DNA fragments. This accuracy is crucial, as even small volume errors can affect the success of digestion, ligation or transformation.

Gel electrophoresis - Model text

Gel electrophoresis is a technique used to separate biomolecules such as DNA based primarily on molecular size, shape and charge. DNA samples are loaded into wells in an agarose gel, and then an electric current is applied across the gel. DNA fragments migrate toward the positive electrode due to the negatively charged phosphate groups in their backbone. Smaller or more highly charged fragments travel further through the porous gel matrix because of reduced resistance. In gene cloning, gel electrophoresis is essential for verifying the size of DNA fragments after restriction digestion or PCR. This verification is crucial, as it ensures that the gene of interest and the plasmid vector are the correct sizes before ligation, helping confirm successful cloning steps.

PCR - Model text

PCR (Polymerase Chain Reaction) is a laboratory technique used to amplify specific DNA sequences, from a small initial sample. Primers, nucleotides and DNA polymerase are used in a thermal cycler to replicate DNA through many cycles of denaturation, annealing and extension. During denaturation, the DNA is heated to separate into single strands. The temperature is then lowered to allow primers to bind to their complementary sequences, followed by a higher temperature that enables a heat-stable DNA polymerase (such as Taq) to synthesize new strands. In gene cloning, PCR is essential for amplifying the gene of interest and for screening bacterial colonies after transformation. This screening is crucial, as it helps confirm whether bacteria have successfully taken up the correct plasmid construct.


Centrifuge - Model text

Centrifuges are devices used to mix or separate substances based on density by spinning samples at high speeds. In molecular biology, they are often used at lower speeds to quickly collect liquids at the bottom of tubes or to mix reagents evenly. This is achieved by placing tubes in a balanced rotor and spinning them briefly, which forces the contents to the bottom and ensures uniform distribution. In gene cloning, centrifugation is essential for mixing small volumes of reagents such as enzymes, buffers and DNA. This mixing is important, as it ensures that all components are in contact and react efficiently, which supports the success of processes like digestion, ligation and transformation.

Restriction Enzymes - Model text

Restriction enzymes are proteins that cut DNA at specific sequences called recognition sites. These enzymes are naturally found in bacteria, where they function as a defense mechanism against viral infection. Viruses inject their DNA into bacterial cells, so restriction enzymes cleave the foreign DNA, which prevents the virus from hijacking the cell's machinery.

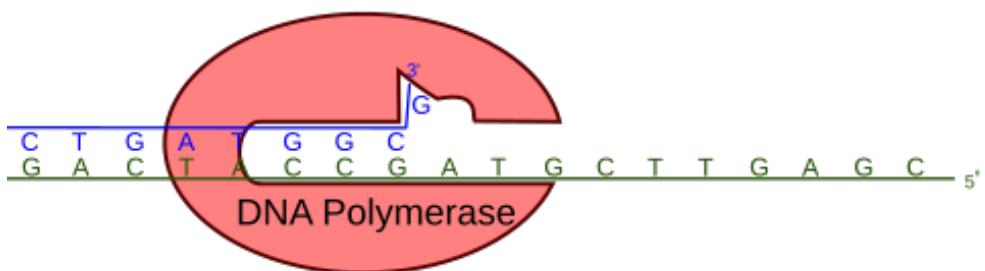
A restriction enzyme scans a DNA molecule for a specific recognition sequence, typically a palindromic site 4–8 base pairs long. It first identifies the target site, then binds to the DNA, and after that cleaves both strands, producing either sticky ends with overhangs or blunt ends with straight cuts. This site-specific cleavage is essential for preparing DNA fragments for cloning.

Restriction enzymes are essential in gene cloning because they generate complementary ends that ensure the gene is inserted in the correct location and orientation. Consequently, restriction enzymes allow precise and predictable digestion of both the plasmid vector and the gene of interest.

DNA Ligase

DNA ligase is an enzyme that joins DNA fragments together. This enzyme is naturally found in all cells, where it seals breaks in the DNA backbone. DNA replication produces short Okazaki fragments on the lagging strand, so ligase joins these fragments to form a continuous DNA strand.

DNA ligase recognizes breaks in the sugar-phosphate backbone of double-stranded DNA. It first identifies the nick, then binds to the site, and after that catalyzes a phosphodiester bond between adjacent nucleotides, sealing the strand. This joining activity is essential for connecting DNA fragments during recombinant DNA construction.


DNA ligase is vital in gene cloning because it permanently joins the gene of interest to the plasmid vector. As a result, it ensures a stable recombinant DNA molecule is created that can be replicated and expressed in host cells.

DNA Polymerase

DNA polymerase is an enzyme that synthesizes new DNA. This enzyme is naturally found in all cells, where it copies DNA during cell division. DNA replication involves a template strand, so that polymerase adds complementary nucleotides to this strand to ensure each daughter cell receives an identical copy of DNA.

DNA polymerase firstly identifies an RNA primer which has been attached to the template strand, then it binds to the primer, and after that extends the strand by adding nucleotides in the 5' to 3' direction. This process is essential in amplifying genes in molecular biology.

DNA polymerase is crucial in gene cloning because it amplifies DNA sequences using techniques like PCR. This usually leads to enough copies of the target gene to allow for successful insertion into a plasmid vector.

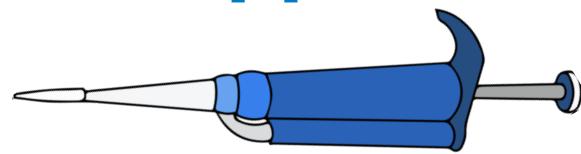
Example of Increased Scaffolding Gel Electrophoresis - Text 2

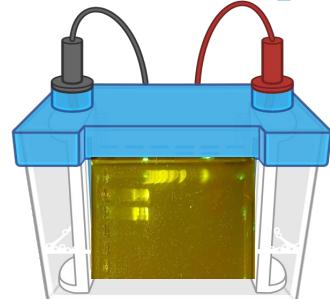
_____ is a technique used to separate _____ such as DNA based primarily on _____, _____ and _____. DNA samples are loaded into _____ in an _____, and _____ an _____. _____ is applied across the gel. DNA fragments migrate toward the _____ _____ the negatively charged _____ groups in their _____. Smaller or more highly charged fragments travel further through the _____. _____ reduced _____. In gene cloning, gel electrophoresis is _____ for verifying the size of DNA fragments after _____ or _____. This verification is _____, _____ it ensures that the _____ and the _____ are the correct sizes before _____, helping confirm successful cloning steps.

Sample Rubric - Equipment

Criteria	Achievement (tick one)		
	Limited	Developing	High level
<p>The descriptive report contains appropriate stages:</p> <ul style="list-style-type: none"> ● Function ● How it works ● Application in gene cloning ● Importance/impact 			
Technical, scientific vocabulary is used.			
<p>The descriptive report contains appropriate language features</p> <ul style="list-style-type: none"> ● Sequential conjunctions ● Cause and effect conjunctions ● Evaluative language 			

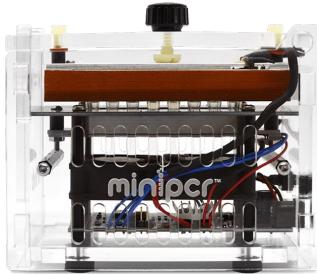
Sample Rubric - Biological tools


Criteria	Achievement (tick one)		
	Limited	Developing	High level
<p>The descriptive report contains appropriate stages:</p> <ul style="list-style-type: none"> ● Function ● Natural role ● How it works ● Application in gene cloning ● Importance/impact 			
Technical, scientific vocabulary is used.			
<p>The descriptive report contains appropriate language features</p> <ul style="list-style-type: none"> ● Sequential conjunctions ● Cause and effect conjunctions ● Evaluative language ● High modality language 			

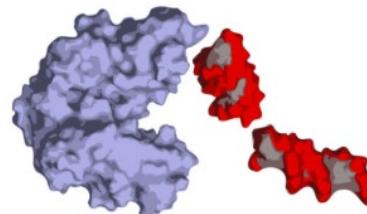

Literacy activity

Equipment

Micropipettes

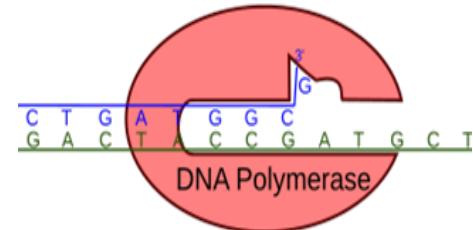


Gel electrophoresis


Centrifuge

PCR

Biological tools


Restriction Enzymes

DNA Ligase

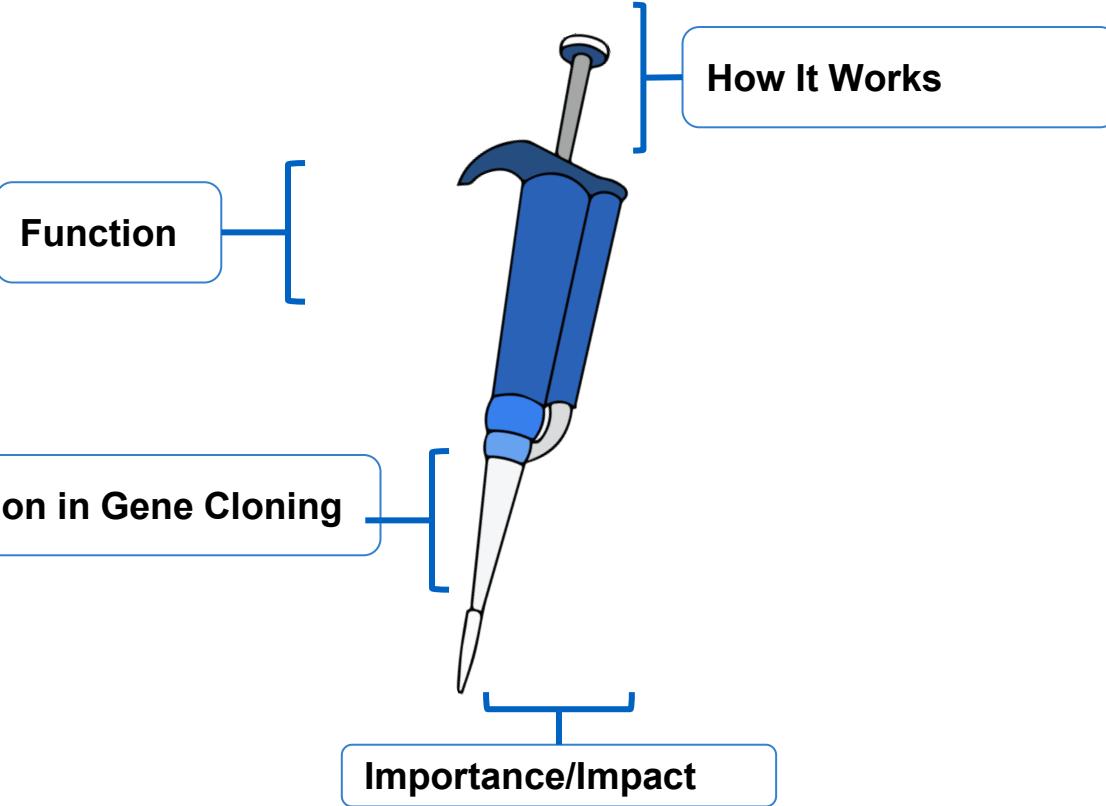
DNA Polymerase

Model Text - Stages

Micropipettes

Micropipettes are laboratory tools used to measure and transfer very small volumes of liquid, typically in microlitres (μL). Liquid is drawn into a disposable tip of the micropipette by pressing the plunger to the first stop and slowly releasing it while submerged in the liquid. It is then dispensed by pressing the plunger to the second stop, followed by tip ejection to maintain sterility. In gene cloning, micropipettes are essential for accurately measuring reagents such as enzymes, buffers, and DNA fragments. This accuracy is crucial, as even small volume errors can affect the success of digestion, ligation, or transformation.

Function


How It Works

Application in Gene Cloning

Importance/Impact

Micropipettes

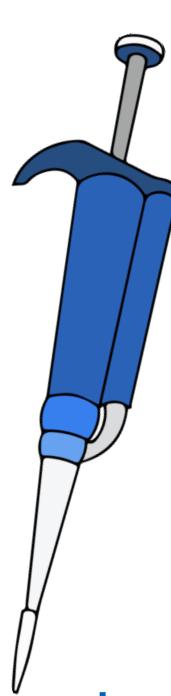
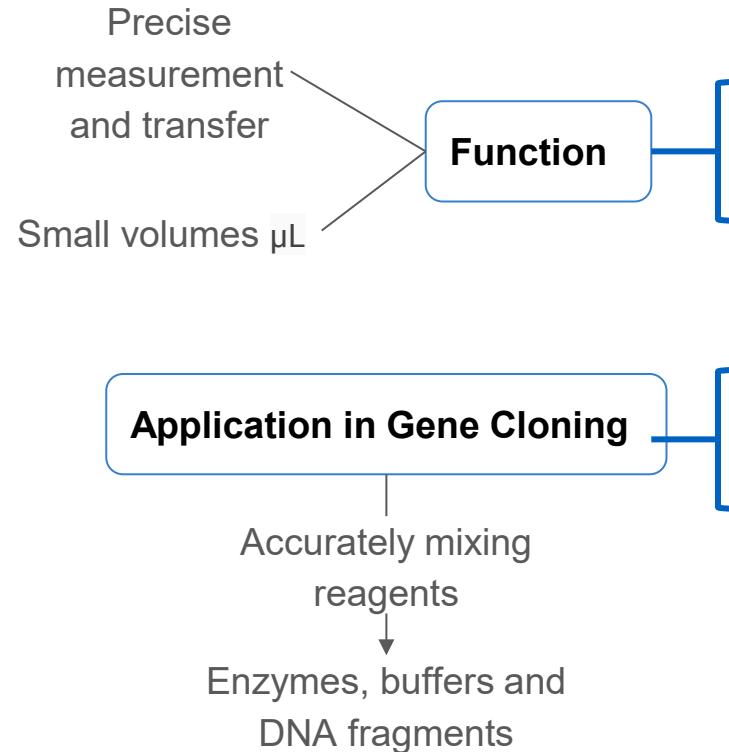
Visual Summary

Model Text - Scientific language

Micropipettes

Micropipettes are laboratory tools used to measure and transfer very small volumes of liquid, typically in microlitres (μL). Liquid is drawn into a disposable tip of the micropipette by pressing the plunger to the first stop and slowly releasing it while submerged in the liquid. It is then dispensed by pressing the plunger to the second stop, followed by tip ejection to maintain sterility. In gene cloning, micropipettes are essential for accurately measuring reagents such as enzymes, buffers, and DNA fragments. This accuracy is crucial, as even small volume errors can affect the success of digestion, ligation, or transformation.

Function



How It Works

Application in Gene Cloning

Importance/Impact

Micropipettes

Visual Summary

How It Works

Pressing the plunger to the first stop

Slowly releasing it while submerged in the liquid

Pressing plunger to second stop to dispense

Tip ejection

Drawing liquid in (aspirating)

Maintains sterility

Importance/Impact

small volume errors can affect the success

→ e.g. digestion, ligation, or transformation

Model Text - Language features

Micropipettes

Micropipettes are laboratory tools used to measure and transfer very small volumes of liquid, typically in microlitres (μL). Liquid is drawn into a disposable tip of the micropipette by pressing the plunger to the first stop and slowly releasing it while submerged in the liquid. It is then dispensed by pressing the plunger to the second stop, followed by tip ejection to maintain sterility. In gene cloning, micropipettes are essential for accurately measuring reagents such as enzymes, buffers, and DNA fragments. This accuracy is crucial, as even small volume errors can affect the success of digestion, ligation, or transformation.

Sequential conjunctions to explain steps in a process

Cause and effect conjunctions

Evaluative language

Model Text - Stages

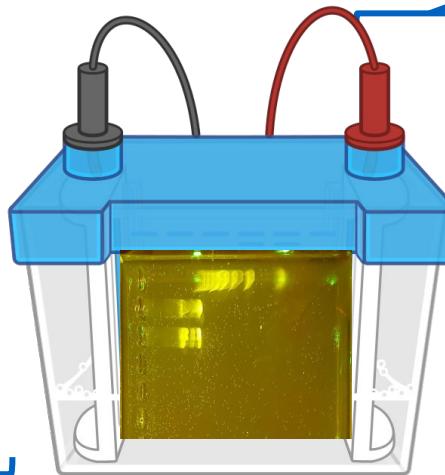
Gel electrophoresis

Gel electrophoresis is a technique used to separate biomolecules such as DNA based primarily on molecular size, shape and charge. DNA samples are loaded into wells in an agarose gel, and then an electric current is applied across the gel. DNA fragments migrate toward the positive electrode due to the negatively charged phosphate groups in their backbone. Smaller or more highly charged fragments travel further through the porous gel matrix because of reduced resistance. In gene cloning, gel electrophoresis is essential for verifying the size of DNA fragments after restriction digestion or PCR. This verification is crucial, as it ensures that the gene of interest and the plasmid vector are the correct sizes before ligation, helping confirm successful cloning steps.

Function

How It Works

Application in Gene Cloning


Importance/Impact

Visual Summary

Gel electrophoresis

How It Works

Function

Application in Gene Cloning

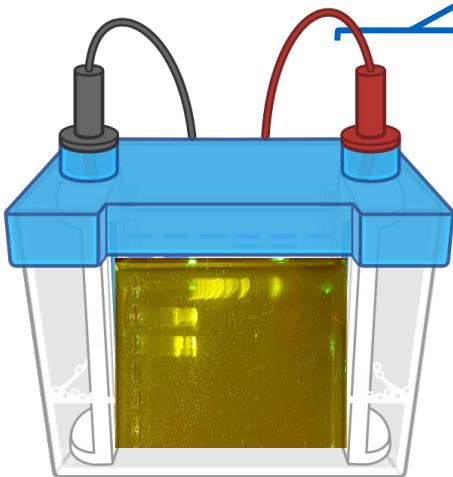
Importance/Impact

Model Text - Scientific language

Gel electrophoresis

Gel electrophoresis is a technique used to separate biomolecules such as DNA based primarily on molecular size, shape and charge. DNA samples are loaded into wells in an agarose gel, and then an electric current is applied across the gel. DNA fragments migrate toward the positive electrode due to the negatively charged phosphate groups in their backbone. Smaller or more highly charged fragments travel further through the porous gel matrix because of reduced resistance. In gene cloning, gel electrophoresis is essential for verifying the size of DNA fragments after restriction digestion or PCR. This verification is crucial, as it ensures that the gene of interest, and the plasmid vector are the correct sizes before ligation, helping confirm successful cloning steps.

Function


How It Works

Application in Gene Cloning

Importance/Impact

Visual Summary

Gel electrophoresis

Function

Separate biomolecules

Weight, molecular shape and degree of charge.

Application in Gene Cloning

after digestion or PCR.

Verifying the size of DNA fragments

How It Works

DNA samples are loaded into wells

Porous, agarose gel

Electric current is applied

Negative Phosphate groups in DNA

DNA migrates towards positive end

↓ resistance

Smaller fragments move further

Importance/Impact

Gene of interest is correct sizes

confirm
successful steps

Model Text - Language features

Gel electrophoresis

Gel electrophoresis is a technique used to separate biomolecules such as DNA based primarily on molecular size, shape and charge. DNA samples are loaded into wells in an agarose gel, and then an electric current is applied across the gel. DNA fragments migrate toward the positive electrode due to the negatively charged phosphate groups in their backbone. Smaller or more highly charged fragments travel further through the porous gel matrix because of reduced resistance. In gene cloning, gel electrophoresis is essential for verifying the size of DNA fragments after restriction digestion or PCR. This verification is crucial, as it ensures that the gene of interest, and the plasmid vector are the correct sizes before ligation, helping confirm successful cloning steps.

Sequential conjunctions to explain steps in a process

Cause and effect conjunctions

Evaluative language

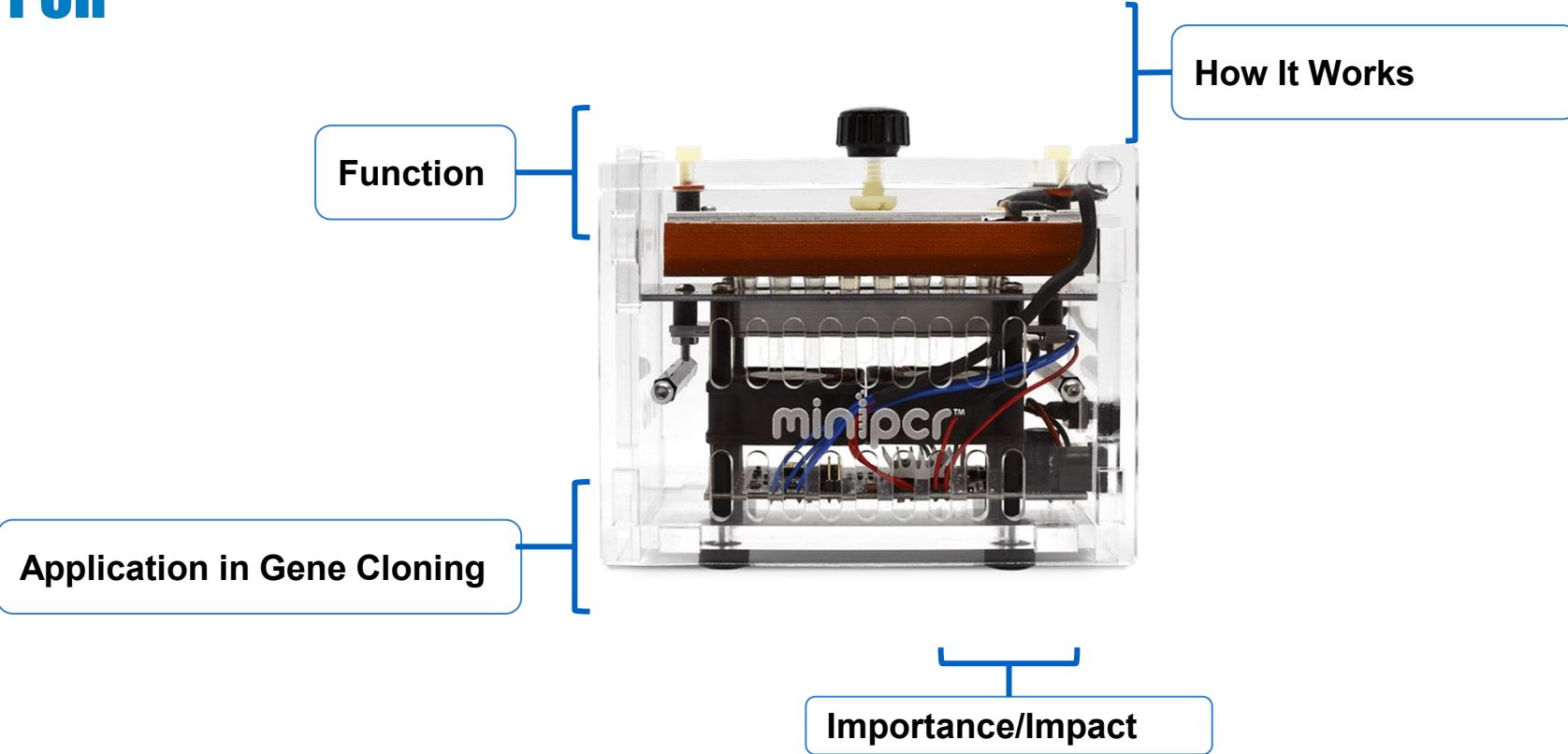
Model Text - Stages

Polymerase Chain Reaction

PCR (Polymerase Chain Reaction) is a laboratory technique used to amplify specific DNA sequences, from a small initial sample.

Function

Primers, nucleotides, and DNA polymerase are used in a thermal cycler to replicate DNA through many cycles of denaturation, annealing, and extension. During denaturation, the DNA is heated to separate into single strands. The temperature is then lowered to allow primers to bind to their complementary sequences, followed by a higher temperature that enables a heat-stable DNA polymerase (such as *Taq*) to synthesize new strands. In gene cloning, PCR is essential for amplifying the gene of interest and for screening bacterial colonies after transformation. This screening is crucial, as it helps confirm whether bacteria have successfully taken up the correct plasmid construct.


How It Works

Application in Gene Cloning

Importance/Impact

PCR

Visual Summary

Model Text - Scientific language

Polymerase Chain Reaction

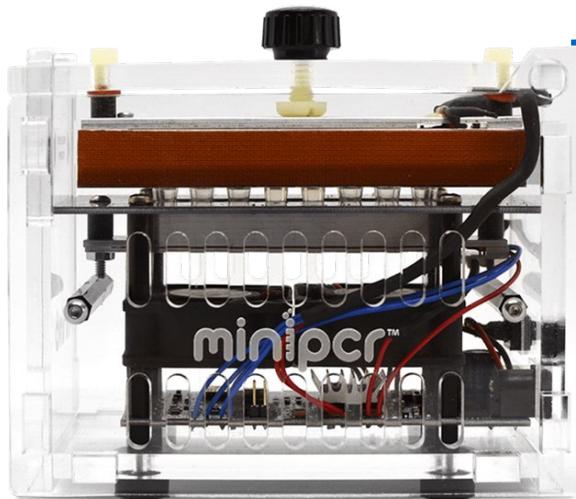
PCR (Polymerase Chain Reaction) is a laboratory technique used to amplify specific DNA sequences, from a small initial sample.

Function

Primers, nucleotides, and DNA polymerase are used in a thermal cycler to replicate DNA through many cycles of denaturation, annealing, and extension. During denaturation, the DNA is heated to separate into single strands. The temperature is then lowered to allow primers to bind to their complementary sequences, followed by a higher temperature that enables a heat-stable DNA polymerase (such as Taq) to synthesize new strands. In gene cloning, PCR is essential for amplifying the gene of interest and for screening bacterial colonies after transformation. This screening is crucial, as it helps confirm whether bacteria have successfully taken up the correct plasmid construct.

How It Works

Application in Gene Cloning


Importance/Impact

PCR

Visual Summary

Amplify specific DNA sequences
Small initial sample

Function

Application in Gene Cloning

Amplify gene of interest

Screening bacterial colonies after transformation

How It Works

Denaturation: DNA heated to separate into single strands

95°C

Annealing: Temp ↓ to attach primer

53°C

Extension DNA Polymerase synthesizes new strands

68°C

Amplification of DNA

Heat resistant Taq

30 cycles = billion copies

Importance/Impact

Confirm transformation

Model Text - Language features

Polymerase Chain Reaction

PCR (Polymerase Chain Reaction) is a laboratory technique used to amplify specific DNA sequences, from a small initial sample. Primers, nucleotides, and DNA polymerase are used in a thermal cycler to replicate DNA through many cycles of denaturation, annealing, and extension. During denaturation, the DNA is heated to separate into single strands. The temperature is then lowered to allow primers to bind to their complementary sequences, followed by a higher temperature that enables a heat-stable DNA polymerase (such as Tag) to synthesize new strands. In gene cloning, PCR is essential for amplifying the gene of interest and for screening bacterial colonies after transformation. This screening is crucial as it helps confirm whether bacteria have successfully taken up the correct plasmid construct.

Sequential conjunctions to explain steps in a process

Cause and effect conjunctions

Evaluative language

Model Text - Stages

Centrifuge

Centrifuges are devices used to mix or separate substances based on density by spinning samples at high speeds. In molecular biology, they are often used at lower speeds to quickly collect liquids at the bottom of tubes or to mix reagents evenly. This is achieved by placing tubes in a balanced rotor and spinning them briefly, which forces the contents to the bottom and ensures uniform distribution. In gene cloning, centrifugation is essential for mixing small volumes of reagents such as enzymes, buffers, and DNA. This mixing is important, as it ensures that all components are in contact and react efficiently, which supports the success of processes like digestion, ligation, and transformation.

Function

How It Works

Application in Gene Cloning

Importance/Impact

Centrifuge

Visual Summary

Function

How It Works

Application in Gene Cloning

Importance/Impact

Model Text - Scientific language

Centrifuge

Centrifuges, are devices used to mix or separate substances based on density, by spinning samples at high speeds. In molecular biology, they are often used at lower speeds to quickly collect liquids at the bottom of tubes or to mix reagents evenly. This is achieved by placing tubes in a balanced rotor and spinning them briefly, which forces the contents to the bottom and ensures uniform distribution. In gene cloning, centrifugation is essential for mixing small volumes of reagents such as enzymes, buffers, and DNA. This mixing is important, as it ensures that all components are in contact and react efficiently, which supports the success of processes like digestion, ligation, and transformation.

Function

How It Works

Application in Gene Cloning

Importance/Impact

Centrifuge

Visual Summary

Separate or mix substances

Based on density

Function

Application in Gene Cloning

mixing small volumes of reagents

E.g. enzymes, buffers
DNA

How It Works

Place tubes in a rotor

Must be balanced

Spin briefly

Components are forced to the bottom

Ensures uniform distribution

Importance/Impact

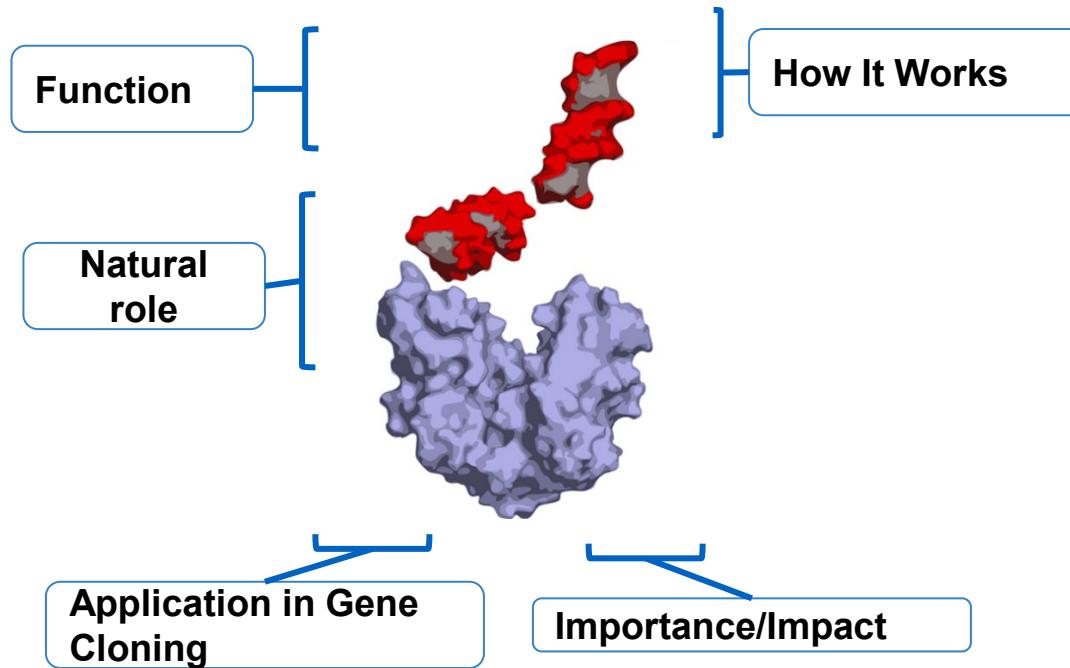
components are in contact and react efficiently

success of processes

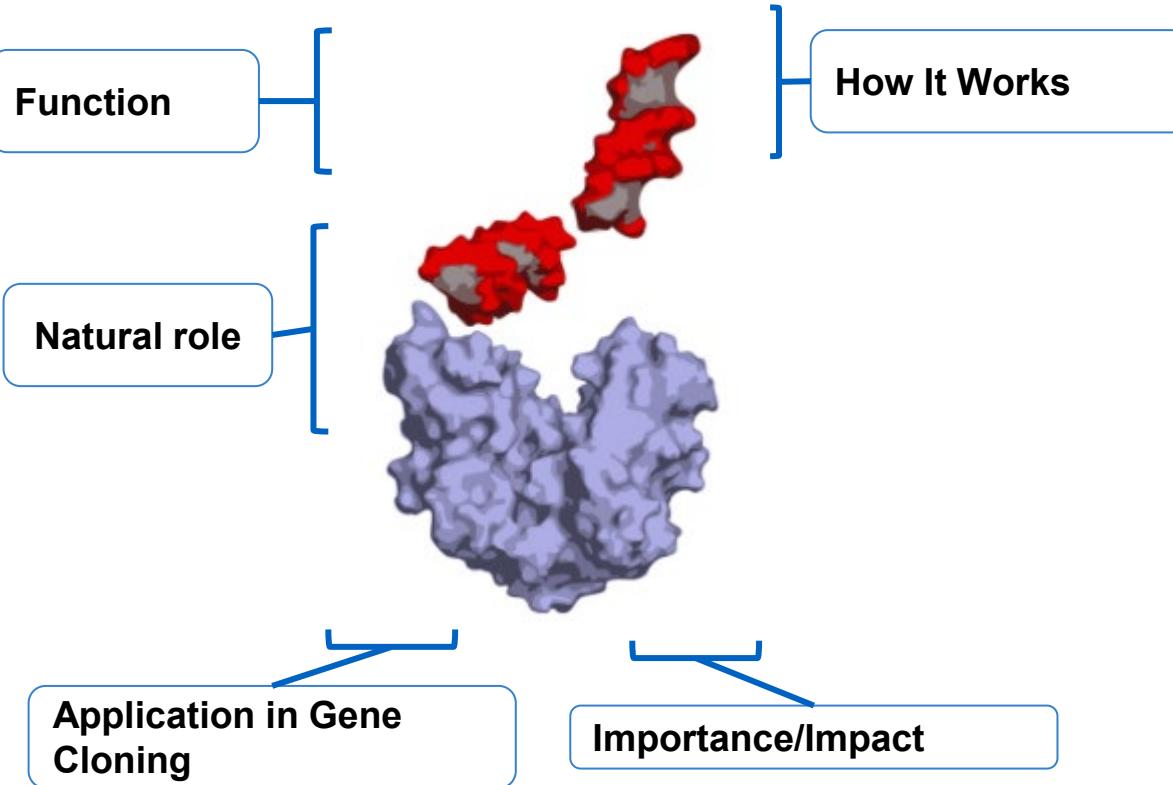
Model Text - Language features

Centrifuge

Centrifuges, are devices used to mix or separate substances based on density by spinning samples at high speeds. In molecular biology, they are often used at lower speeds to quickly collect liquids at the bottom of tubes or to mix reagents evenly. This is achieved by placing tubes in a balanced rotor and spinning them briefly, which forces the contents to the bottom and ensures uniform distribution. In gene cloning, centrifugation is essential for mixing small volumes of reagents such as enzymes, buffers, and DNA. This mixing is important, as it ensures that all components are in contact and react efficiently, which supports the success of processes like digestion, ligation, and transformation.


Sequential conjunctions to explain steps in a process

Cause and effect conjunctions


Evaluative language

Model Text - Stages

Read the model text on **Restriction Enzymes** and in the right margin, label the 5 **stages** of the text .

Restriction Enzymes

Model Text - Stages

Restriction Enzymes

Restriction enzymes are proteins that cut DNA at specific sequences called recognition sites. These enzymes are naturally found in bacteria, where they function as a defense mechanism against viral infection. Viruses inject their DNA into bacterial cells, so restriction enzymes cleave the foreign DNA, which prevents the virus from hijacking the cell's machinery.

A restriction enzyme scans a DNA molecule for a specific recognition sequence, typically a palindromic site 4–8 base pairs long. It first identifies the target site, then binds to the DNA, and after that cleaves both strands, producing either sticky ends with overhangs or blunt ends with straight cuts. This site-specific cleavage is essential for preparing DNA fragments for cloning.

Function

Natural role

How It Works

Model Text - Stages

Restriction Enzymes continued...

Restriction enzymes are essential in gene cloning because they generate complementary ends that ensures the gene is inserted in the correct location and orientation. Consequently, restriction enzymes allow precise and predictable digestion of both the plasmid vector and the gene of interest.

Application in Gene Cloning

Importance/Impact

Model Text - Stages

Read the model text on Restriction Enzymes and underline the scientific language within the text .

Restriction enzymes

Model Text - Scientific language

Restriction Enzymes

Restriction enzymes are proteins that cut DNA at specific sequences called recognition sites. These enzymes are naturally found in bacteria, where they function as a defense mechanism against viral infection. Viruses inject their DNA into bacterial cells, so restriction enzymes cleave the foreign DNA, which prevents the virus from hijacking the cell's machinery.

A restriction enzyme scans a DNA molecule for a specific recognition sequence, typically a palindromic site 4–8 base pairs long. It first identifies the target site, then binds to the DNA, and after that cleaves both strands, producing either sticky ends with overhangs or blunt ends with straight cuts. This site-specific cleavage is essential for preparing DNA fragments for cloning.

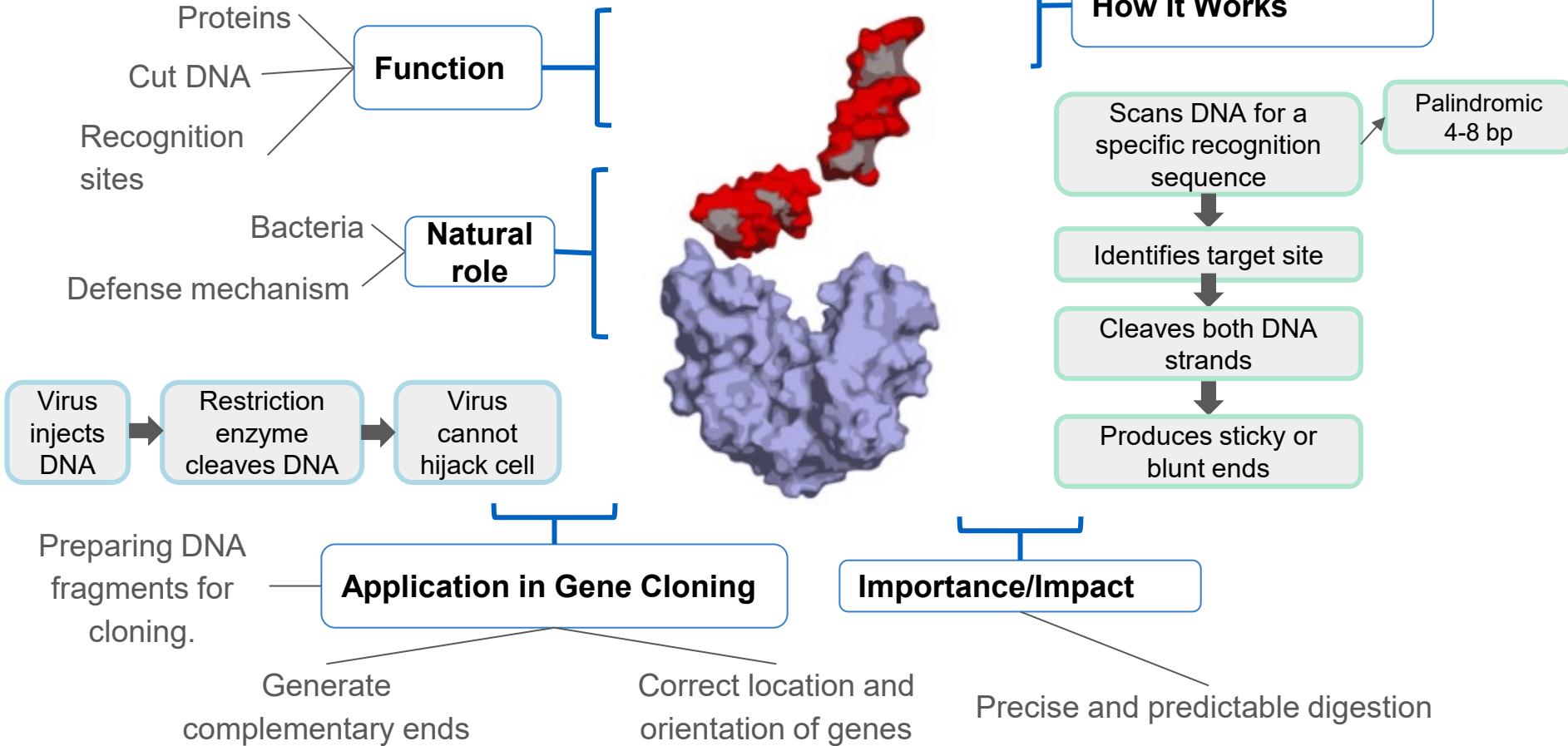
Function

Natural role

How It Works

Model Text - Scientific language

Restriction Enzymes

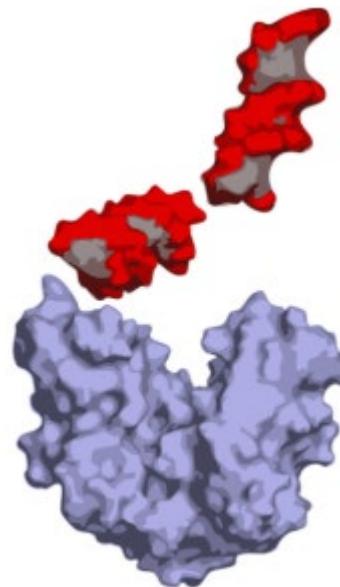

Restriction enzymes are essential in gene cloning because they generate complementary ends that ensures the gene is inserted in the correct location and orientation. Consequently, restriction enzymes allow precise and predictable digestion of both the plasmid vector and the gene of interest.

Application in Gene Cloning

Importance/Impact

Visual Summary

Restriction enzymes


Model Text - Stages

Read the model text on **Restriction Enzymes and highlight the language features within the text.**

Cause and effect
conjunctions

Sequential
conjunctions to
explain steps in
a process

Evaluative
language

Model Text - Language features

Restriction Enzymes

Restriction enzymes are proteins that cut DNA at specific sequences called recognition sites. These enzymes are naturally found in bacteria, where they function as a defense mechanism against viral infection. Viruses inject their DNA into bacterial cells, so restriction enzymes cleave, the foreign DNA, which prevents the virus from hijacking the cell's machinery.

Cause and effect conjunctions

because

since

thus

therefore

as

For this reason

hence

As a result

Consequently

Model Text - Language features

Restriction Enzymes

First of all

afterward

Finally

initially

subsequently

Ultimately

To begin
with

next

then

In the end

A restriction enzyme scans a DNA molecule for a specific recognition sequence, typically a palindromic site 4–8 base pairs long. It first identifies the target site, then binds to the DNA, and after that cleaves both strands, producing either sticky ends with overhangs or blunt ends with straight cuts. This site-specific cleavage is essential for preparing DNA fragments for cloning.

Sequential conjunctions to explain steps in a process

Model Text - Language features

Restriction Enzymes

Restriction enzymes are essential in gene cloning because they generate complementary ends that ensures the gene is inserted in the correct location and orientation. Consequently, restriction enzymes allow precise and predictable digestion of both the plasmid vector and the gene of interest.

Modal language is used to take a position or present a point of view.

Stronger language has higher modality

indispensable

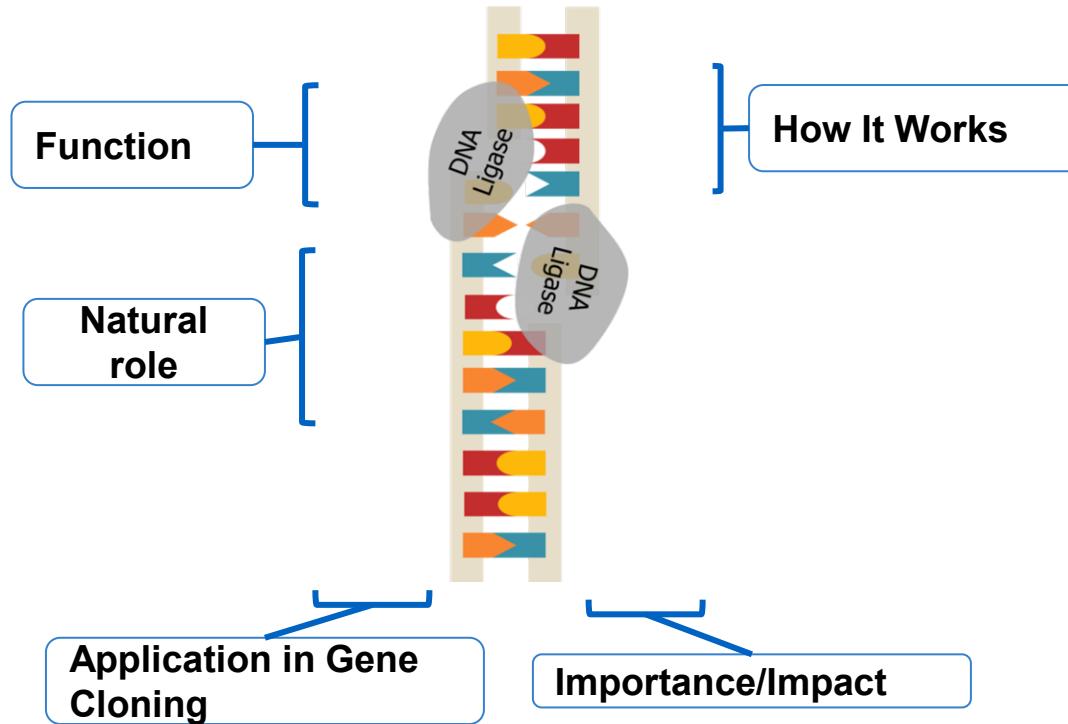
vital

required

necessary

crucial

important


Evaluative language

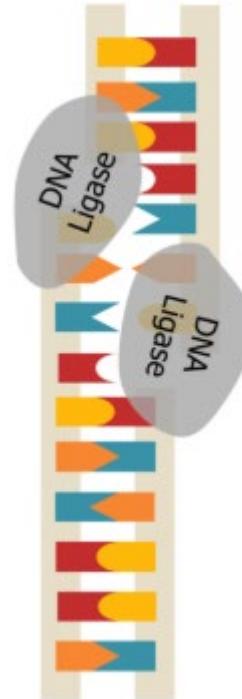
High modality

Cause and effect conjunctions

Model Text - Stages

Read the model text on **DNA Ligases** and in the right margin, label the 5 **stages** of the text .

DNA Ligase


Function

Natural role

Application in Gene Cloning

How It Works

Importance/Impact

Model Text - Stages

DNA Ligase

DNA ligase is an enzyme that joins DNA fragments together. This enzyme is naturally found in all cells, where it seals breaks in the DNA backbone. DNA replication produces short Okazaki fragments on the lagging strand, so ligase joins these fragments to form a continuous DNA strand.

Function

Natural role

DNA ligase recognizes breaks in the sugar-phosphate backbone of double-stranded DNA. It first identifies the nick, then binds to the site, and after that catalyzes a phosphodiester bond between adjacent nucleotides, sealing the strand. This joining activity is essential for connecting DNA fragments during recombinant DNA construction.

How It Works

Model Text - Stages

DNA Ligase

DNA ligase is vital in gene cloning because it permanently joins the gene of interest to the plasmid vector. As a result, it ensures a stable recombinant DNA molecule is created that can be replicated and expressed in host cells.

Application in Gene Cloning

Importance/Impact

Model Text - Stages

Read the model text on **DNA Ligase** and underline the scientific language within the text.

DNA Ligase

enzyme

DNA fragments

Model Text - Scientific language

DNA Ligase

DNA ligase is an enzyme that joins DNA fragments together.

This enzyme is naturally found in all cells, where it seals breaks in the DNA backbone. DNA replication produces short Okazaki fragments on the lagging strand, so ligase joins these fragments to form a continuous DNA strand.

Function

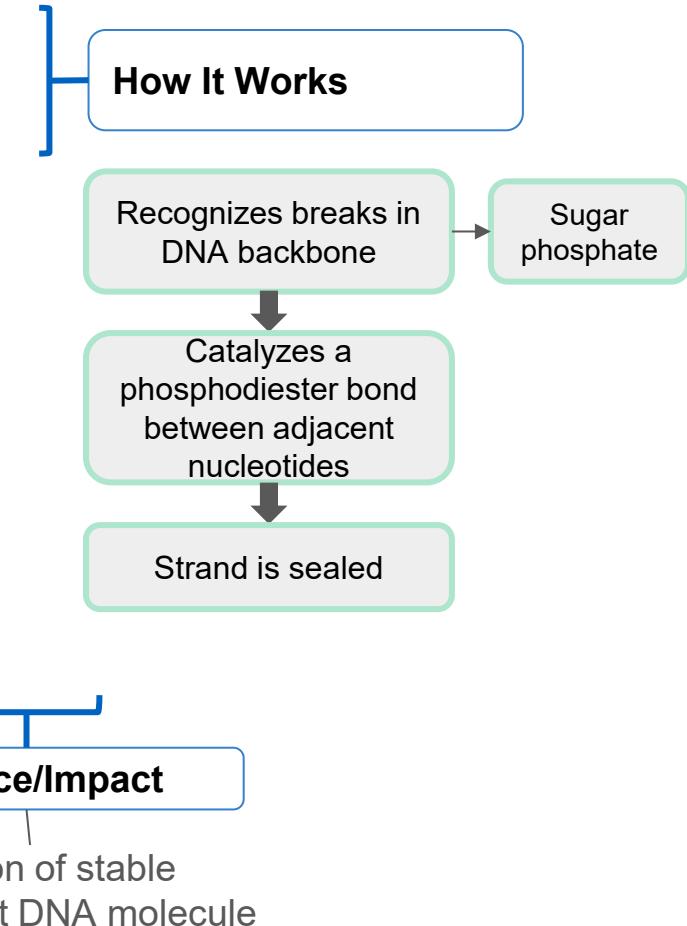
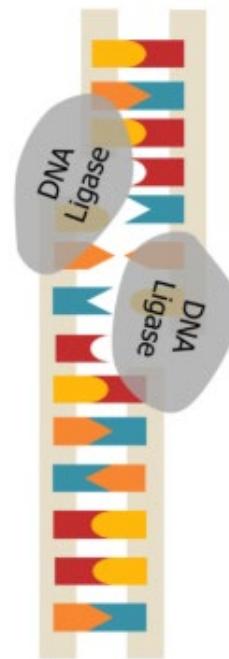
Natural role

DNA ligase recognizes breaks in the sugar-phosphate backbone of double-stranded DNA. It first identifies the nick, then binds to the site, and after that catalyzes a phosphodiester bond between adjacent nucleotides, sealing the strand. This joining activity is essential for connecting DNA fragments during recombinant DNA construction.

How It Works

Model Text - Scientific language

DNA Ligase

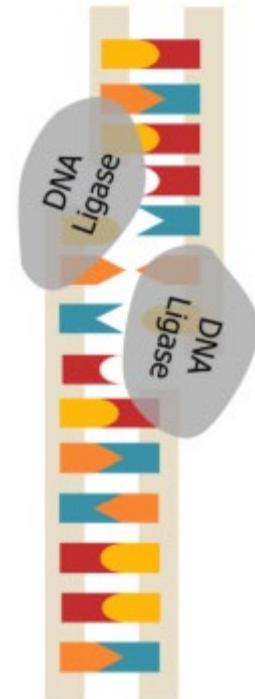
DNA ligase is vital in gene cloning because it permanently joins the gene of interest to the plasmid vector. As a result, it ensures a stable recombinant DNA molecule is created that can be replicated and expressed in host cells.

Application in Gene Cloning

Importance/Impact

Visual Summary

DNA Ligase



Model Text - Stages

Read the model text on **DNA Ligase** and highlight the **language features** within the text .

Cause and effect
conjunctions

Sequential
conjunctions to
explain steps in
a process

Evaluative
language

Model Text - Language features

DNA Ligase

DNA ligase is an enzyme that joins DNA fragments together.

This enzyme is naturally found in all cells, where it seals breaks in the DNA backbone. DNA replication produces short Okazaki fragments on the lagging strand, so ligase joins these fragments to form a continuous DNA strand.

Cause and effect conjunctions

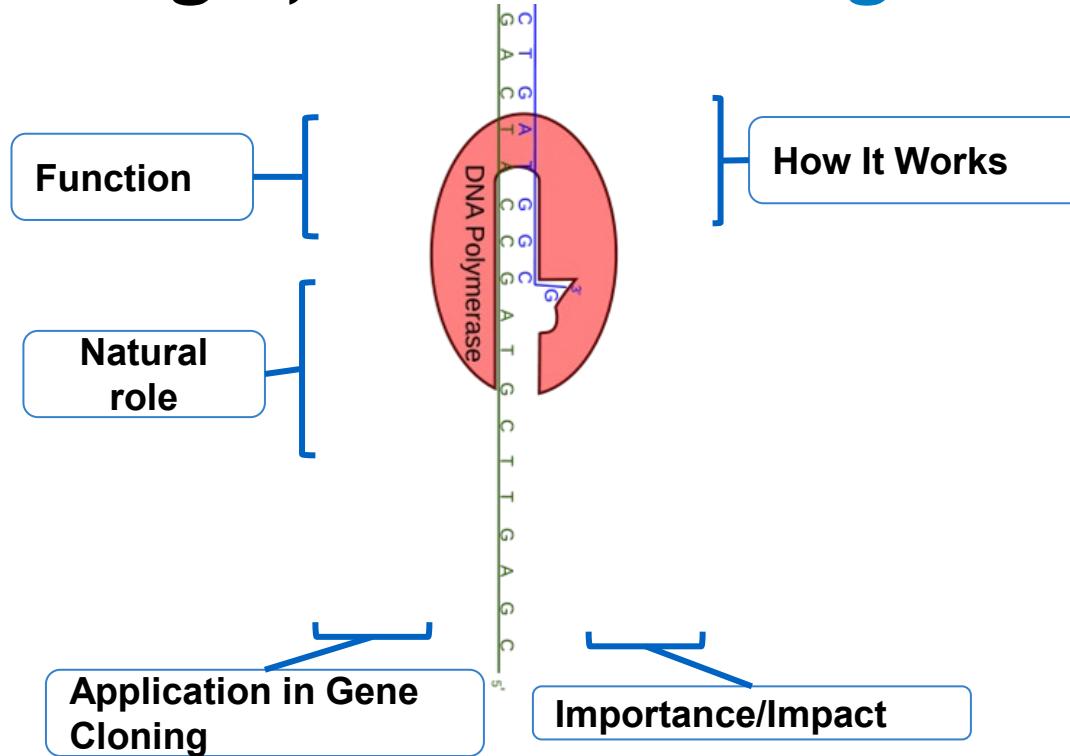
DNA ligase recognizes breaks in the sugar-phosphate backbone of double-stranded DNA. It first identifies the nick, then binds to the site, and after that catalyzes a phosphodiester bond between adjacent nucleotides, sealing the strand. This joining activity is essential for connecting DNA fragments during recombinant DNA construction.

Sequential conjunctions to explain steps in a process

Model Text - Language features

DNA Ligase

DNA ligase is **vital** in gene cloning **because** it permanently joins the gene of interest to the plasmid vector. As a result, it **ensures** a stable recombinant DNA molecule is created that can be replicated and expressed in host cells.


Evaluative language

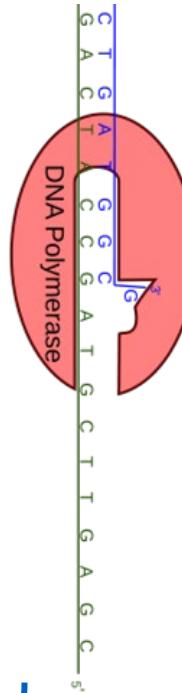
High modality

Cause and effect conjunctions

Model Text - Stages

Read the model text on DNA polymerase and in the right margin, label the 5 stages of the text.

DNA polymerase


Function

Natural role

Application in Gene Cloning

How It Works

Importance/Impact

Model Text - Stages

DNA Polymerase

DNA polymerase is an enzyme that synthesizes new DNA. This enzyme is naturally found in all cells, where it copies DNA during cell division. DNA replication involves a template strand, so that polymerase adds complementary nucleotides to this strand to ensure each daughter cell receive an identical copy of DNA.

DNA polymerase firstly identifies a RNA primer which has been attached to the template strand, then it binds to the primer, and after that extends the strand by adding nucleotides in the 5' to 3' direction. This process is essential in amplifying genes in molecular biology.

Function

Natural role

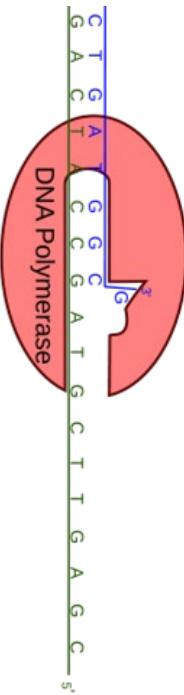
How It Works

Model Text - Stages

DNA Polymerase

DNA polymerase is crucial in gene cloning because it amplifies DNA sequences using techniques like PCR. This usually leads to enough copies of the target gene to allow for successful insertion into a plasmid vector.

Application in Gene Cloning


Importance/Impact

Model Text - Stages

Read the model text on DNA polymerase and underline the scientific language within the text .

DNA polymerase

enzyme

Model Text - Stages

DNA Polymerase

DNA polymerase is an enzyme that synthesizes new DNA. This enzyme is naturally found in all cells, where it copies DNA during cell division. DNA replication involves a template strand, so that polymerase adds complementary nucleotides to this strand to ensure each daughter cell receive an identical copy of DNA.

DNA polymerase firstly identifies a RNA primer which has been attached to the template strand, then it binds to the primer, and after that extends the strand by adding nucleotides in the 5' to 3' direction. This process is essential in amplifying genes in molecular biology.

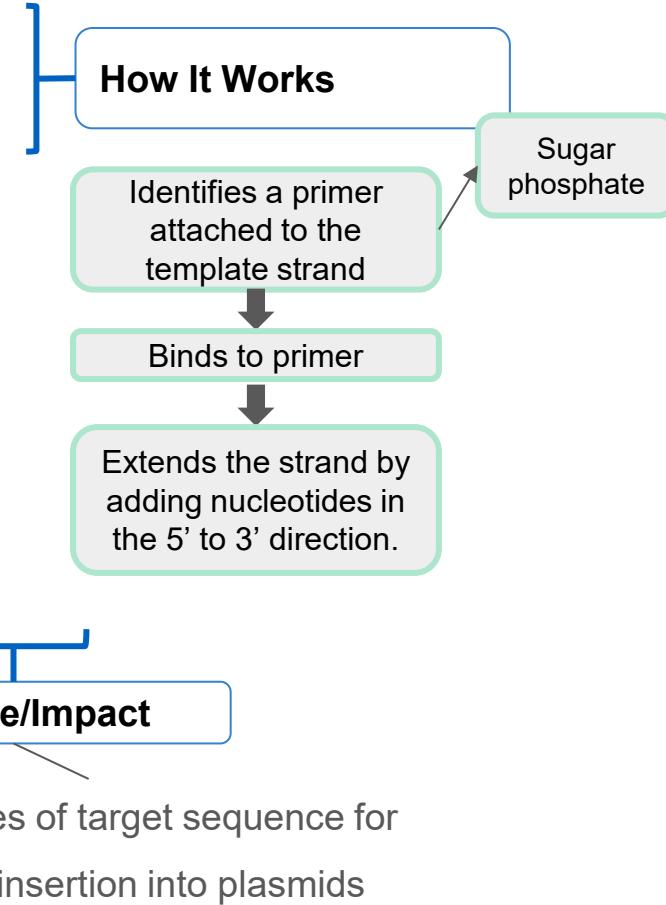
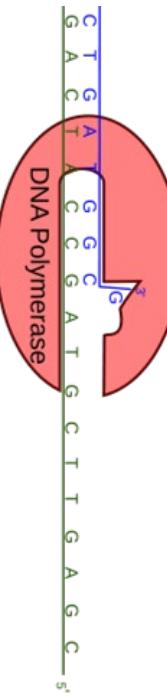
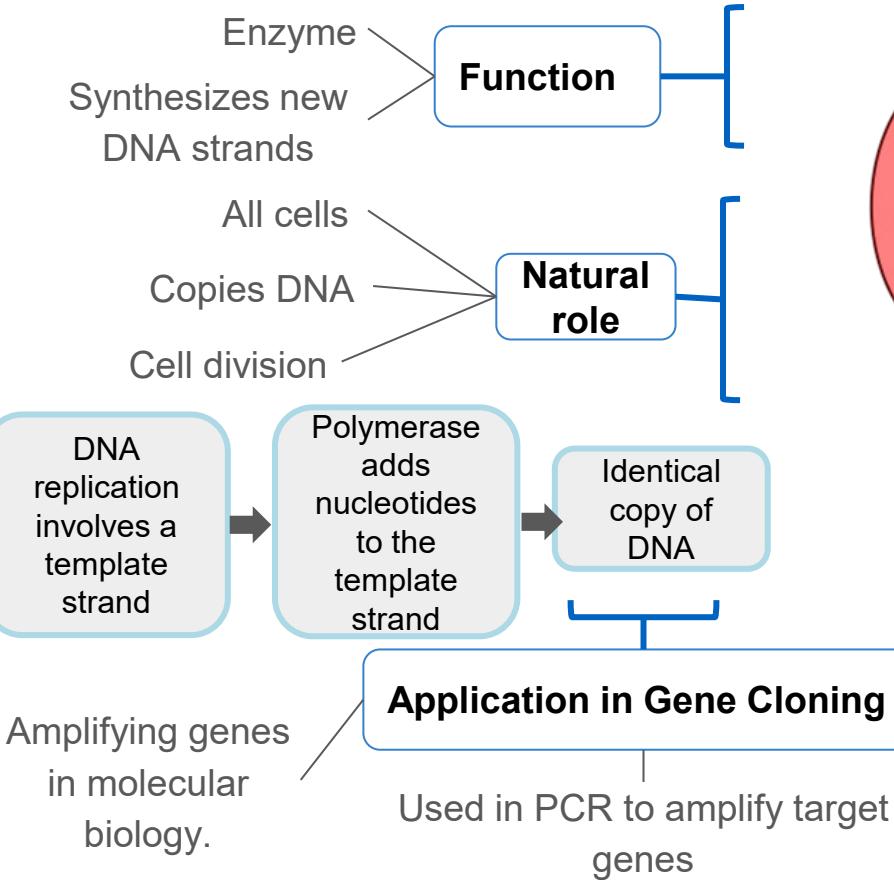
Function

Natural role

How It Works

Model Text - Stages

DNA Polymerase

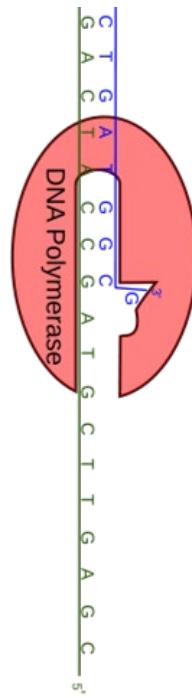



DNA polymerase is crucial in gene cloning because it amplifies DNA sequences using techniques like PCR. This usually leads to enough copies of the target gene to allow for successful insertion into a plasmid vector.

Application in Gene Cloning

Importance/Impact

Visual Summary

DNA Polymerase



Model Text - Stages

Read the model text on DNA polymerase and highlight the language features within the text.

Cause and effect
conjunctions

Sequential
conjunctions to
explain steps in
a process

Evaluative
language

Model Text - Language features

DNA Polymerase

DNA polymerase is an enzyme that synthesizes new DNA. This enzyme is naturally found in all cells, where it copies DNA during cell division. DNA replication involves a template strand, so that polymerase adds complementary nucleotides to this strand to ensure each daughter cell receive an identical copy of DNA.

Cause and effect conjunctions

DNA polymerase firstly identifies a RNA primer which has been attached to the template strand, then it binds to the primer, and after that extends the strand by adding nucleotides in the 5' to 3' direction. This process is essential in amplifying genes in molecular biology.

Sequential conjunctions to explain steps in a process

Model Text - Language features

DNA Polymerase

DNA polymerase is crucial in gene cloning because it amplifies DNA sequences using techniques like PCR. This usually leads to enough copies of the target gene to allow for successful insertion into a plasmid vector.

Evaluative language

High modality

Cause and effect conjunctions